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Abstract

We derive a New Keynesian Phillips Curve under Calvo staggered pricing and price com-
petition. Firms strategic interactions induce price adjusters to change their prices less when
there are more �rms that do not adjust. This reduces the slope of the Phillips curve and
generates an additional source of real rigidity that magni�es the impact of monetary shocks
on the economic activity. Endogenous entry ampli�es the impact of both monetary and real
shocks. We study the design of the optimal Taylor rule in the case of a �xed number of �rms
and we characterize the optimal monetary policy to restore the social planner allocation and
the optimal Ramsey steady state in the case of endogenous entry.
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1 Introduction

The core idea of Keynesian economics is that in the presence of nominal price rigidities
aggregate demand shocks have an impact on the real variables at least in the short run. The
workhorse New Keynesian (NK) model has formalized this idea in dynamic stochastic general
equilibrium (DSGE) models assuming monopolistic competition between a given number of
�rms in each sector and some form of price staggering. The most common form of nominal
rigidity is the one introduced by Calvo (1983), in which each �rm has the chance of adjusting
its price with a �xed probability in each period.1 Firms re-optimize taking into account future
changes in their marginal cost, which delivers the link between real and nominal variables.
One of the main drawbacks of this framework is that when prices change frequently (for
example every 4-6 months), nominal rigidity by itself does not su¢ce to explain the low
slope of the New Keynesian Phillips Curve (NKPC) in estimated DSGE models, such as the
one of Smets and Wouters (2003). Reconciling the micro evidence of frequently price change
with the macro-evidence of a low slope of the NKPC is still a theoretical challenge of the
literature that requires additional forms of real rigidities.
A second drawback comes from the fact that assuming monopolistic competition, price

adjusters take as given the current and future price levels and the number of �rms, ignoring
any strategic interaction with the current and future competitors. This is unrealistic when
local markets include a small, and possibly, endogenous number of �rms producing highly
substitutable goods. A large body of empirical evidence in industrial organization (Campbell
and Hopenhayn, 2005), trade (Feenstra and Weinstein, 2010) and macroeconomics (see the
discussion in Rotemberg and Woodford, 2000 and Faia, 2012) suggests that common markets
are characterized by relevant competition e¤ects due to imperfect competition.
Having in mind these two drawbacks, we depart from the standard model with a con-

tinuum of �rms and consider a small number of direct competitors producing imperfectly
substitute goods in each di¤erent market: �rms take into account strategic interactions with
�rms in their own market, not in other markets. Our contribution to the NK literature is
twofold. First, to disentangle the role played by strategic interaction, we derive a modi�ed
NKPC under Calvo pricing and Bertrand competition among a �xed number of �rms.2 We
�nd that, in line with the evidence, the modi�ed NKPC is characterized by a lower slope than
the one implied by the standard monopolistic competition model. Since strategic interactions
imply that �rms are less prone to adjust their prices in response to shocks, the semi-elasticity
of in�ation with respect to real marginal costs is much lower than in the standard NK-DSGE
model. Given the direct relationship between real marginal costs and the output gap this
implies that also the semi-elasticity of in�ation with respect to output is lower. In particular,
the slope of the modi�ed NKPC decreases in the level of concentration of the markets and in
the inter-sectoral elasticity of substitution between goods. This implies that, ceteris paribus,
a higher frequency of price change is needed. In this respect, we consider our framework as
a solution to partially overcome the �rst drawback mentioned above. Indeed, thanks to the
lower slope of the NKPC, our model contributes to reconcile the micro-evidence of frequent
price adjustments (Bils and Klenow, 2004; Nakamura and Steinsson, 2008) with the macro-
economic data indicating that in�ation is rather inertial (see Altig et al., 2011). Furthermore,
the lower slope of the Phillips curve implies that adopting a standard Taylor rule, the deter-
minacy region enlarges as the number of �rms or the elasticity of substitution between goods

1See Yun (1996), King and Wolman (1996) and Woodford (2003).
2As well known, the alternative microfoundation of nominal rigidities advanced by Taylor (1979) relies on

prices predetermined for a �xed number of periods. In principle Bertrand competition between a fraction of
price-setting �rms would lead to the same qualitative implications as those obtained under Calvo pricing.
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decrease, thus admitting more accommodative rules than the standard model.
As long as the number of �rms is exogenous, the distortions remain the same as in

the standard NK model, with Bertrand markups higher than the monopolistic competition
markups. Therefore usual results on the optimal monetary policy hold. Introducing shocks,
we can also derive the optimal interest rate rule that minimizes the microfounded central
bank loss function (as in Rotemberg and Woodford, 1997). The optimal interest rate rule
becomes less aggressive in response to an in�ationary cost-push shocks when markets are
more concentrated or the elasticity of substitution between goods decreases.
Our second contribution is to endogenize the evolution of the number of �rms active

in these markets (following the recent literature on entry: Bilbiie et al., 2008, 2012, 2014;
Etro and Colciago, 2010; Faia, 2012). We �nd that the impact of shocks is much stronger
when taking into account endogenous business creation, but high substitutability between
goods and high inter-sectoral concentration are essential for strategic interactions to amplify
monetary shocks. On one side, the process of endogenous entry magni�es the e¤ect of
technology shocks by attracting more entry and strengthening competition, which in turn
promotes consumption and labor supply and induces a hump-shaped pattern of in�ation. On
the other side, in front of an expansionary monetary shock both the real rigidities due to
strategic interactions and the gradual creation of new di¤erentiated varieties contribute to
stabilize in�ation so as to magnify the real e¤ects. Importantly, a key di¤erence between the
model with monopolistic competition and the one with Bertrand competition and endogenous
entry, is that the interest rate cut induces business destruction in the former and business
creation in the latter, thus our model being more in accordance with the evidence. As a
result, the presence of strategic interactions strongly magni�es the impact of the monetary
shock on output.
Finally, we characterize the social planner problem and the required in�ation rate and �s-

cal tools necessary to restore the e¢cient allocation, and we follow the methodology proposed
by Schmidt-Grohe and Uribe (2011) to derive the optimal Ramsey steady state in�ation in
the absence of �scal tools. With respect to the social planner allocation we �nd that the
optimal policy requires zero PPI in�ation associated with a countercyclical CPI in�ation (as
in Bilbiie et al., 2008), a countercyclical labor subsidy and a dividend tak which usually
also countercyclical to eliminate the distortions associated with Bertrand competition that
depend on the number of �rms active in each period. With respect to the Ramsey problem
state we �nd that the optimal steady state in�ation rate is zero in the absence of �scal tools.
This result con�rms what found under Rotemberg pricing end endogenous entry by Faia
(2012).3

Other works, at least since Ball and Romer (1990), have already stressed the role of
strategic complementarities between �rms� prices as a source of real rigidities (see Nakamura
and Steinsson, 2013, for a survey), but we are not aware of any formalization of Bertrand
competition with price staggering as the natural source of strategic complementarities. A
�rst approach to microfound real rigidities, due to Basu (1995), relies on the fact that each
�rm employs all the other goods as intermediate inputs, a second one, adopted by Woodford
(2003) or Altig et al. (2011), relies on �rm-speci�c inputs: in both cases marginal costs
depend on �rms� own relative prices, so as to generate optimal prices increasing in the price
index. A third approach, advanced by Kimball (1995), relies on a demand elasticity that is
increasing in the relative price, generating again strategic complementarity between prices.
Recent applications of this approach by Dotsey and King (2005), Levin et al. (2007) and
Sbordone (2007) have been based on a generalization of the Dixit-Stiglitz aggregator to obtain

3See also Bilbiie et al. (2014) on monopolistic competition with di¤erent homothetic preferences.
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elasticities increasing in prices and in the number of goods, but ignoring strategic interactions
between price-setters.4

The recent research on dynamic entry has been mostly focused on standard monopolistic
competition (Bilbiie et al., 2008, 2012, 2014). Strategic interactions and Bertrand competi-
tion have been explicitly introduced in a �exible price model by Etro and Colciago (2010),
and the �rst applications of Bertrand competition in the NK framework have been developed
by Faia (2012) to analyze the Ramsey problem of choosing the optimal state contingent in-
�ation tax rates and by Lewis and Poilly (2012) for estimation purposes.5 However, all these
models neglect price staggering and adopt a price adjustment cost à la Rotemberg (1982),
which implies that all �rms (rather than a fraction of them) adjust prices simultaneously
and identically in each period.6 Introducing time-dependent staggered pricing à la Calvo we
obtain a di¤erent form of real rigidity associated with the substitutability between goods:
if few �rms in a market do not change prices after a cost shock, the price adjustment of
the others are smaller the more substitutable are the goods. Contrary to this, Rotemberg
pricing delivers higher adjustments when substitutability increases, both under monopolistic
and Bertrand competition.7

The paper is organized as follows. Section 2 presents the DSGE model with Bertrand
Competition and a �xed number of �rms. It shows the modi�ed NKPC and the main results
on the model dynamics and the optimal monetary policy. Section 3 endogenizes the evolution
of the number of �rms active in the markets and discuss the main results in the presence of
endogenous market structure. Section 4 concludes.

2 Nominal Rigidities with Bertrand Competition

In this section we introduce Bertrand competition in a DSGE model with price staggering.
Consider a representative household with utility:

U0 = E0

1X

t=0

�t

(Z 1

0

logC�td��
�L1+�t

1 + �

)
�; � � 0 (1)

where � 2 (0; 1) is the discount factor, Lt is labor supply and Et[�] is the expectation operator
at time t. Here C�t represents the Dixit-Stiglitz consumption index for a continuum of sectors
� 2 [0; 1]:

C�t =

"
ntP
j=1

C�t(j)
��1
�

# �
��1

(2)

where nt 2 [2;1) is the number of producers of di¤erentiated varieties in each sector and
the price index is P�t = [

Pnt
j=1 p�t(j)

1��]1=(1��). Substitutability between goods is low across
sectors (namely unitary given the log utility) but high within sectors, and each sector is highly

4Bergin and Feenstra (2000) have replaced CES preferences with translog preferences, that are homothetic
and deliver an elasticity of demand increasing in a (�nite) number of goods. Nevertheless, they focus on
di¤erent issues and, again, thy neglect the role of strategic interactions.

5See also Cecioni (2010) for an empirical assessment of the Bertrand model and Benigno and Faia (2010)
on open economy issues.

6See also Auray et al. (2012). Cavallari (2013) has adopted Calvo pricing but focusing on monopolistic
competition and ignoring strategic interactions.

7Notice that the empirical analysis of Lewis and Poilly (2012) has found a small competition e¤ect in their
model with Rotember pricing, but this is not surprising since, besides various di¤erences between setups,
they have focused on a relatively high number of �rms and low inter-sectoral substitutability.
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concentrated. The household maximizes (1) choosing how much to work and how much to
consume in each period and sector, under the following budget constraint in nominal terms:

Bt +

Z 1

0

P�tC�td� = (1 + it�1)Bt�1 +WtLt +Dt (3a)

where Bt are nominal risk-free bonds, purchased at time t and maturing at time t + 1. We
de�ned it as the nominal interest rate on the risk-free bonds agreed at time t, while Wt

are nominal wages. Since as usual households own the �rms, they receive an additional
income coming from nominal pro�ts, that are entirely distributed in form of dividends, Dt.
In each period t the optimality condition for consumption across sectors requires the same
expenditure It = P�tC�t for any �. Symmetry between sectors will allow us to consider a
representative sector with consumption Ct and (average) price index Pt.
Given the nominal wage Wt, the optimal labor supply is:

Lt =

�
Wt

�PtCt

�1=�
(4)

Each �rm i produces a good with a linear production function. Labor is the only input, and
output of �rm i is:

yt(i) = Atlt(i) (5)

where At is total factor productivity at time t, and lit is total labor hours employed by �rm
i. This implies that the real marginal costs in aggregate terms are mct = wt=At, where we
de�ne the real wage as wt =Wt=Pt. The Euler equation is:

(PtCt)
�1
= �Et

h
(1 + it) (Pt+1Ct+1)

�1
i

(6)

where it is the nominal interest rate. Loglinearizing the above equations around the zero
in�ation steady state, we have:

ŵt = Ĉt + �L̂t = Ât + cmct (7)

Ĉt = Ât + L̂t (8)

Ĉt = EtĈt+1 � (̂{t � Et�t+1) (9)

where {̂t � log it � log(1=�) is the log-deviation of the nominal interest rate from its steady
state value, Et�t+1 � Pt+1=Pt�1 is expected in�ation and Ât is the log-deviation of produc-
tivity, which will evolve exogenously following a standard AR(1) process Ât = �aÂt�1 + "a;t
where �a 2 [0; 1) and "a;t is a white noise.

2.1 Calvo pricing

In this section we start by assuming that the number of �rms active in each sector is exogenous
and constant, namely nt = n for any t (in the next section we will endogenize the number of
�rms). In each period, a fraction � of the �rms across all sectors cannot adjust the nominal
price and maintains its pre-determined price, and a fraction 1�� can reoptimize the nominal
price at the new level pt, which maximizes the discounted value of future pro�ts. Applying
the law of large numbers, the average price index across all sectors in the economy is:

Pt =
�
�Pt�1

1�� + (1� �)np1��t

� 1
1�� (10)
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whose steady state version implies P 1�� = np1��. The usual log-linearization around a
zero in�ation steady state provides the average in�ation rate �t = (1 � �)(p̂t � P̂t�1). In
every period t, each optimizing �rm i chooses the new price pt to maximize the expected
pro�ts until the next adjustment, taking into account the probability that there will be a
new adjustment �:

max
pt
Et

1P
k=0

(��)
k

�
pt �

Wt+k

At+k

�
p��t It

Pn
j=1 pt+k(j)

1��
(11)

where the prices of the intersectoral competitors in the initial period and in all the future pe-
riods are taken as given. The FOC of this problem, after simplifying and imposing symmetry
of all the adjusted prices reduces to:

ptEt
1P
k=0

(��)
k

P 1��t+k

� �Et
1P
k=0

(��)
k
�
pt �

Wt+k

At+k

�

P 1��t+k

= (1� �) p1��t Et
1P
k=0

(��)
k
�
pt �

Wt+k

At+k

�

P
2(1��)
t+k

(12)

Loglinearizing we obtain:

a0p̂t
1P
k=0

(��)
k
+ a1Et

1P
k=0

(��)
k bPt+k + a2Et

1P
k=0

(��)
k
�
cWt+k � bAt+k

�
= 0 (13)

where the coe¢cients a0, a1 and a2 are derived in the Appendix as functions of the steady
state variables. Replacing them and cmct+k = cWt+k � bAt+k � bPt+k, and solving for p̂t in a
recursive form we have:

p̂t = (1� ��) bPt +
(1� ��) (n� 1) [� (n� 1) + 1]

[� � 1 + �n (n� 1)]
cmct + ��Etp̂t+1 (14)

which can be combined with the earlier expression for in�ation to obtain:

�t = �Et�t+1 +
(1� �) (1� ��) (n� 1) [� (n� 1) + 1]

� [� � 1 + �n (n� 1)]
cmct (15)

The strategic interactions a¤ect the way in which changes in real marginal costs are
translated into price changes within sectors and therefore into aggregate in�ation. As it will
be clear below strategics interaction lower the slope of the NKPC.

2.2 The modi�ed New Keynesian Phillips Curve

We rewrite the NKPC in terms of output gap from the �exible-price equilibrium output,
given by by�t = bAt, the same as in the standard NK model. Thus, de�ning the output gap as
the deviation of actual output from the �exible price equilibrium output as xt � byt� bAt, and
using the equation of the labor market equilibrium, that is cmct = (1 + �)L̂t = (1 + �)xt, we
�nally get the modi�ed NKPC, that we augment with a supply shock:8

�t = �Et�t+1 + �(�; n)xt + �t (16)

where �t = ���t�1 + "�;t is an exogenous AR(1) shock with �� 2 [0; 1) and "�;t white noise.
The coe¢cient of the output gap is:

8As usual, the model is log-linearized around the zero in�ation deterministic steady state.
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�(�; n) �
�� (n� 1) [� (n� 1) + 1]

� [� � 1 + �n (n� 1)]
(17)

where �� � (1� �) (1� ��) (1 + �)=� is the traditional coe¢cient under monopolistic com-
petition. First of all, notice that the modi�ed coe¢cient coincides with the traditional one
in two cases: for n arbitrarily large, since we are back to the case in which each �rm is
negligible in its own market, and when � ! 1, since �rms tend to produce independent goods
and strategic interactions disappear even between few �rms. In all the other cases, the slope
of the NKPC is smaller than the standard one and, at most, it becomes a third of it in case
of two �rms. This reduces drastically the impact of the output gap on in�ation, a result
which is desirable from an empirical point of view since, as known in the literature, the basic
NKPC implies an excessive reaction of in�ation to changes in real marginal costs. Usual es-
timates from macrodata for the coe¢cient of the NKPC on the marginal cost range between
0:03 and 0:05 (as for example in Levin et al. 2007). The standard model with monopolistic
competition with � = 0:67 (price adjustments every 3 quarters) generates a coe¢cient on the
marginal cost change equal to 0:166, but this does not �t with the mentioned macroevidence
on the small reaction of in�ation to changes in marginal costs. Instead, Bertrand competi-
tion generates a smaller coe¢cient, with a lower bound of 0:055, which is much closer to the
macroevidence, mentioned above.9

Recently, Altig et al. (2011) have estimated a coe¢cient as low as 0:014. To look things
from a microeconomic perspective, consider that with the parameter estimated by Altig et al.
(2011), the standard Calvo model under monopolistic competition requires a value of � = 0:9;
assuming � = 0:99. This implies that prices adjust on average every 30 months, much more
than what appears to be reasonable.10 The introduction of strategic interactions reduces
the implied degree of nominal frictions up to � = 0:82, which implies price adjustments on
average every 5:8 quarters: thus, it almost halves the average period of price adjustment,
being more in accordance with the micro evidence: Bils and Klenow (2004) �nd that half
of prices last 5:5 months excluding sales, but Nakamura and Steinsson (2008) increase this
estimate to 12-13 months excluding both sales and product substitutions.11

In our model, the degree of concentration of markets (inversely related to n) and the
substitutability between goods within sectors (increasing in �) do a¤ect the impact of the
output gap on in�ation. In particular, it is immediate to derive the following comparative
statics on the slope of the Phillips curve:

Proposition 1. Under Bertrand competition and Calvo pricing the NKPC becomes �atter
when the elasticity of substitution among goods increases or the number of �rms decreases.

Contrary to what happens in the baseline model with monopolistic competition, the slope
of the NKPC depends on the substitutability between goods. This is quite important since

9Notice that Smets and Wouters (2007) have estimated their model for the U.S. economy by replacing the
Dixit-Stiglitz aggregator with the Kimball aggregator. The latter implies that the price elasticity of demand
becomes increasing in the �rm�s price. Therefore, prices in the model become more rigid and respond by
smaller amounts to shocks, for a given frequency of price changes �: Using their macro-model, they obtain
a much smaller estimate of the Calvo parameter, about � = 0:67, which implies that price contracts last 3
quarters on average, more in accordance with US microeconomic evidence (see Maćkowiak and Smets, 2008).
Our setup suggests an alternative way to reconcile the micro with the macro-evidence. Needless to say, the
di¤erent sources of real rigidity can be complementary.
10Under Calvo pricing the average price duration is given by 1

1��
: Since the period is a quarter, a value of

� equal to 0:9 means that prices adjust on average every 10 quarters (i.e. every 30 months).
11Our model implies an even better �t to euro-area data, where as emphasized by many authors the median

consumer price lasts about 3:7 quarters months (Maćkowiak and Smets, 2008).
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most �rms compete mainly with few rivals whose products are close substitutes. And in
this case high values of the demand elasticity are associated with smaller price adjustments.
When � increases, �rms become less prone to change prices, because their demand is more
sensitive to price di¤erentials. As a consequence, monetary shocks have smaller e¤ects on
the in�ation and therefore larger e¤ects on the real economy. The limit behavior for (almost)

homogenous goods is lim�!1 �(�; n) = �� (n� 1)
2
= [1+n (n� 1)], which represents the lower

bound of the slope of the Phillips curve. A change in real marginal costs implies a smaller
reaction of current in�ation in more concentrated markets because �rms tend to adjust less
their prices. This is going to amplify the real impact of monetary shocks and downplay
the impact of technology shocks. Another implication, is that entry of �rms increases the
long run slope of the Phillips curve: this is in line with the idea that globalization (larger
markets) and deregulation (lower entry barriers) increase the pass through of shocks on prices
(see Benigno and Faia, 2010).

2.3 Monetary Policy

To close the model we adopt a standard Taylor rule of the form:

{̂t = ��t + xxt + �t; (18)

where � 2 [0;1) and x 2 [0;1) with at least one di¤erent from zero, and �t is a stationary
monetary policy shock, following an AR(1) process �t = ���t�1 + "�;t with �� 2 [0; 1) and
"�;t white noise. To assess the determinacy of the equilibrium, we rewrite the log-linearized
Euler equation (9) as a forward looking IS curve in terms of the output gap. In the absence
of technology shocks this reads as:

xt = Etxt+1 � {̂t + �
e
t+1; (19)

we then substitute the Taylor rule (18) into the IS curve (19). The resulting equation and
the NKPC (16) form a 2x2 system, that can be rewritten in the following matrix form
Xt = AX

e
t+1 +But, where vector Xt includes the in�ation rate �t and the output gap xt,

while ut is the vector of all the shocks. Notice that, the model is isomorphic to the standard
NK model, therefore the necessary and su¢cient conditions for determinacy require:

� +
1� �

�(�; n)
x > 1: (20)

Since (1� �) =�(�; n) decreases in n and increases in � from Proposition 1, we can conclude
that the determinacy region enlarges in the parameter space (�; x) as the number of �rms
decreases or the elasticity of substitution increases. The intuition is the following. Assume
that, in the absence of any shock to fundamentals, there is an increase in the expected
in�ation. In the basic NK model a Central Bank that operates according to a Taylor rule
must react by increasing the nominal interest rate enough to increase the real interest rate
and to reduce current consumption, so that a negative output gap brings in�ation under
control. Only when the reaction of the Central Bank is strong enough, it will be able to
avoid self-ful�lling in�ationary expectations. In an economy with concentrated markets (low
n) where few �rms produce extremely substitutable goods (high "), �rms are less prone
to change prices because they can lose a large portion of the customers in their market,
therefore the monetary authority can use a less aggressive policy rule to avoid self-ful�lling
expectations. Remarkably, the elasticity of substitution is irrelevant for determinacy in the
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standard NKPC under monopolistic competition, but it becomes relevant for concentrated
markets.
With a �xed number of �rms and in the absence of cost shocks, our model inherits

the standard property of the NK model: as long as an appropriate labor subsidy restores
the e¢ciency of the long-run equilibrium, by eliminating the wedge between the marginal
rate of substitution (of consumption and labor) and the marginal product of labor, the
short run e¢cient equilibrium is obtained with zero in�ation rate (which is the same in
terms of consumer price or producer price in�ation). In the next section we will study
whether this isstill the case when the number of �rms is variable and endogenous. Here
we study the optimal monetary policy in the presence of an exogenous cost-push shock:
as we will see the number of �rms and the elasticity of substitution among goods a¤ect the
prescriptions for the optimal monetary policy in the presence of a supply shock to the NKPC.
Etro and Rossi (2014) have adopted the linear-quadratic approach proposed by Rotemberg
and Woodford (1997) to derive the central bank loss function as a second order approximation
of the households� utility function around the ine¢cient steady state.12 They have also
shown that, with a labor subsidy restoring the steady state e¢ciency, the microfounded loss
replicates the standard result for the welfare-based loss function. Therefore, we now adopt
the following quadratic loss function:

Lt = Et
1P
k=0

�k
�
#x2t+k + �

2
t+k

�
(21)

where one can microfound the relative weight on the output gap as # = (1� �) (1� ��) (1+
�)=��.
If the Central Bank cannot credibly commit in advance to a sequence of future policy

actions, the optimal monetary policy is discretionary and solves the problem:

min
xt;�t

#x2t + �
2
t + Lt+1 (22)

s:t: : �t = �(�; n)xt + ft

where ft = ��
e
t+1 + �t and Lt+1 are taken as given. The FOC is:

xt = �
�(�; n)

#
�t (23)

and provides xt = ��(�; n)
�
��et+1 + �t

�
=
�
#+ �(�; n)2

�
. Guessing a linear relation between

xt and �t the method of undetermined coe¢cients (Clarida et al., 1999) delivers:

�t = #	�t (24)

where 	 =
�
�(�; n)2 + #(1� ���)

��1
. Substituting in (19) and using �et+1 = ���t, one gets

the optimal Taylor rule after replacing �(�; n)=#:

{̂t =

�
1 + (1� ��)

�
� (n� 1) [� (n� 1) + 1]

� � 1 + �n (n� 1)
� 1

��
�t (25)

This is a Taylor rule of the kind (18) with � > 1 and x = 0, which insures determinacy.
Notice that the optimal coe¢cient on the in�ation rate is smaller compared to the case of

12They consider the case of small steady state distortions.
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monopolistic competition.13 Therefore, Bertrand competition with a small number of �rms in
each sector requires a less aggressive monetary policy compared to monopolistic competition.
Moreover, straightforward comparative statics provides:

Proposition 2. Under Bertrand competition and Calvo pricing, the optimal policy re-
quires (a constant labor subsidy and) a monetary rule reacting to in�ationary shocks with
a coe¢cient increasing in the number of �rms and in the elasticity of substitution between
goods.

One may notice that higher substitutability induces smaller price adjustments, which
would allow for a less aggressive policy. However, when goods become more substitutable,
the dispersion of consumption creates a smaller welfare loss, which asks for less output
stabilization and more in�ation stabilization, and therefore a more aggressive policy. This
second e¤ect is prevailing on the �rst one. Etro and Rossi (2014) have derived the welfare loss
and a similar optimal monetary policy in the absence of the optimal labor subsidy around the
distorted steady state. They examined the welfare gains from a commitment to a monetary
rule �nding that they decrease in more concentrated markets.

3 Endogenous Market Structures with Sticky Prices

Until now we have followed the traditional assumption of the NK literature of keeping ex-
ogenous the number of �rms active in each market. However, the entry process is the fruit
of rational investment decisions that a¤ects the behavior of the aggregate economy and the
propagation of real shocks as well as monetary shocks. It is then crucial to understand
whether this strengthens the mechanism of ampli�cation of the nominal rigidities.
In this section we adopt the same structure of the economy as before, with utility (1) and

production function (5), but we augment the model with endogenous entry (details in the
Appendix). Following the literature on endogenous entry (Bilbiie et al., 2008, 2012, 2014;
Faia, 2012; Etro and Colciago, 2010), the number of �rms active in the representative sector
is now variable and follows the law of motion:

nt = (1� �)(nt�1 + n
e
t�1) (26)

where � 2 (0; 1) is an exogenous exit probability and net is the endogenous number of entrants
in period t. Consumers can now purchase stocks of the �rms, whose average value Vt must
be given by the present discounted value of the future expected dividends, or in recursive
form:

Vt = (1� �)Et

�
(1 + �t+1) (Vt+1 + dt+1)

1 + it

�
(27)

where the nominal interest rate must satisfy the Euler condition (6). The creation of a new
�rm requires a �xed investment of � in units of output. The endogenous entry condition in
each period sets Vt = �. The cost parameter � will be crucial to determine the endogenous
number of �rms in steady state, which a¤ects the dynamic properties of the model under
strategic interactions. The resource constraint of the economy is:

yt = Ct + n
e
tVt = ntdt + wtLt (28)

13For instance, assume uncorrelated shocks (�� = 0), three �rms per sector on average. Under monopolistic
competition the optimal coe¢cient is � = �. However, if � = 3 the optimal coe¢cient under Bertrand
competition is � = 2:1, and if � = 30 the optimal coe¢cient under Bertrand competition is � = 17:5.
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In this environment, we derive a new version of NKPC that takes into account the e¤ects
of business creation into account. For simplicity, we assume (as in Bilbiie et al., 2008) that
newly created �rms are randomly assigned the same price of one of the existing �rms, and
they have the same chances to adjust or not their prices. Therefore, the average price index
in the continuum of sectors is:

Pt =
�
�Pt�1

1�� + (1� �)ntp
1��
t

� 1
1�� (29)

whose log-linearization around a zero in�ation steady state depends now on the rate of
business creation:

bPt = � bPt�1 + (1� �)bpt �
1� �

� � 1
n̂t (30)

Loglinearizing the new equation for the optimal price and combining it with the equation
above (see the Appendix for the general derivation) we obtain:

Proposition 3. Under Bertrand competition with Endogenous entry and Calvo pricing
the CPI in�ation rate satis�es:

�t = � (1� �)Et�t+1 + � � cmct +
� (1� �) (1� �)

� � 1
Etn̂t+1 �

(1� �)

� (� � 1)
n̂t (31)

with:

� =
(1� �) [1� �� (1� �)] (n� 1) [� (n� 1) + 1]

� [� � 1 + �n (n� 1)]
(32)

First of all, notice that the semi-elasticitiy of in�ation with respect to real marginal costs
and that with respect to expected in�ation are substantially the same as in the model with a
�xed number of �rms, reported in the previous section. The only di¤erence is that for both
the elasticities, the parameter � is now moltiplied by the �rms survival probability (1� �).
This implies that, the higher the probability of future exit �; the lower will be the overall
�rms� discount factor, that is � (1� �) : As a consequence, a higher exit probability reduces
the relevance of future in�ation and increases the relevance of the current real marginal
cost on price adjustments. Despite these di¤erences, Proposition 1 holds as before: under
Bertrand competition with Endogenous entry and Calvo pricing the NKPC becomes �atter
when the elasticity of substitution among goods increases or the number of �rms decreases.
However, notice that there are two new determinants of CPI in�ation: the current entry

rate and the future entry rate.14 To verify the total impact of endogenous business creation
on in�ation, let us iterate forward the NKPC imposing zero expected in�ation and zero net
entry in the long run. We can easily obtain:

�t = �Et
1P
k=0

[� (1� �)]
k cmct+k �

(1� �)
2

� (� � 1)
Et

1P
k=0

[� (1� �)]
k
n̂t+k (33)

which shows that current in�ation depends positively on the present discounted value of the
future changes in the marginal cost and negatively on a discounted value of the expected
net entry of �rms. Current and future business creation jointly reduce the current rate of
in�ation because they reduce markups and the welfare-based price index, with an impact
that is inversely proportional to the elasticity of substitution between goods produced by
competitors (only when �rms produce almost homogenous goods the number of �rms does
not have any impact on in�ation). Therefore, endogenous entry does not a¤ect substantially
the slope of the NKPC but generates an additional source of rigidity of in�ation, which is
going to amplify monetary shocks even more than with a �xed number of �rms.

14Remarkably, notice that the steady state number of �rms a¤ects the impact of changes in the marginal
cost on in�ation, but is neutral on the impact of business creation on in�ation.

11



3.1 Impulse response functions

To assess both the quantitative and the qualitative e¤ects of our results, we now study the
dynamics of the endogenous entry model in response to technology and monetary shocks,
using the following standard parameterization: we set � = 0:99, � = 1=4, � = 0:67, and
� = 0:025.15 Moreover, since our framework focuses on a continuum of sectors producing
goods with limited substitutability and on high inter-sectoral substitutability, we adopt a
value of the elasticity of substitution that is in the high range of usual calibrations, namely
� = 30.16 It is important to remark that this is consistent with non-negligible markups
under Bertrand competition because strategic interactions increase markups compared to
monopolistic competition and the number of rivals within each sector is assumed to be low
in steady state: the markup is still 7% in duopolies, 5% with three competitors, 4.3% with
�ve �rms, 3.8% with ten �rms. The cost parameter � is set to obtain three �rms per sector
in the steady state of the baseline model (with Bertrand competition and endogenous entry).
This calibration implies that, on average, in each quarter a �rm out of three does adjust
its own price.17 The persistence of technology and monetary policy shocks are respectively
�a = 0:9 and �� = 0:5. The two shocks are calibrated to have a 1% standard deviation.
We consider the case in which the monetary authority implements the standard Taylor rule
(18), and therefore we set � = 1:5 and x = 0:125. In Figures 2 and 3 we show the impulse
response functions to 1% technology and monetary shocks of three models with Calvo pricing:
i) the Bertrand model with endogenous entry (solid line); ii) the model with monopolistic
competition and endogenous entry (croix line); iii) the standard NK model with monopolistic
competition and a �xed number of �rms (dotted line).
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Figure 2: IRFs to 1% technology shock

15None of these parameters a¤ect the qualitative results of the model.
16Qualitative results are not a¤ected by the adoption of lower value of �:
17One can reinterpret the model assuming a higher number of goods produced by multiproduct �rms

(Minniti and Turino, 2013).

12



0 2 4 6 8 10 12
-0.5

0

0.5

1

1.5

Output

Bertrand with Endogenous Entry Monopolistic Competition with Endogenous Entry Standard Monopolistic Competition

0 2 4 6 8 10 12
-0.5

0

0.5

1

1.5

Hours

0 2 4 6 8 10 12
-0.2

0

0.2

0.4

Inflation

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Number of Firms

0 2 4 6 8 10 12
-2

-1

0

1

Markup

0 2 4 6 8 10 12
-0.4

-0.2

0

0.2

0.4

Nominal Interest Rate

Figure 3: IRFs to 1% monetary policy shock

Let us consider �rst an expansionary productivity shock (Figure 2). The reduction in
�rms marginal costs leads to price reductions only of the �rms that can adjust their prices.
This e¤ect is common to all models embedding Calvo pricing, since price staggering limits
the number of �rms that can adjust prices. In our model however, we have an additional
source of real rigidity: strategic interactions reduce even further the endogenous size of the
adjustments of the price-setters. As shown in Figure 1, the in�ation rate decreases by a
much smaller amount compared to the standard model with monopolistic competition and
a �xed number of �rms, but also compared to the model with monopolistic competition and
endogenous entry (the gap with the latter is entirely due to the strategic interactions). In
spite of the competition e¤ect induced by the shock, which would reduce markups in a �exible
price set-up (Etro and Colciago, 2010), the markups remain pro-cyclical in front of supply
shocks due to the nominal rigidity: the stronger it is, the higher is the increase on impact of
the average markup, that is the gap between average prices and lower marginal costs. Higher
pro�tability attracts more entry generating a hump shaped pattern for the number of active
�rms and contributing to boost labor supply and output. The impact on output is so large
as to induce a contractionary reaction of the monetary policy that partly crowds out the
expansionary e¤ect due to the negative response of in�ation. As shown in the �gure, this
is in contrast with the expansionary reaction of monetary policy in the baseline NK model.
In spite of this, the quantitative impact is largely di¤erent compared to such baseline model
without both entry and strategic interactions (which generates a much smaller impact on
output).
Let us now consider the case of an expansionary monetary shock (Figure 3). As usual,

a reduction of the nominal interest rate leads to a reduction of the real interest rate which
a¤ects consumption and investment opportunities, boosting output and generating in�ation.
Nominal rigidities imply a limited reaction of in�ation, as in the standard NK model, which
generates a positive reaction of output. Strategic interactions due to Bertrand competition
generate additional real rigidities, which induce a smaller reaction of in�ation and a much
higher reaction of output. The average markups are countercyclical in all the three models,
in response to a monetary shocks. However notice that, a key di¤erence between the model
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with monopolistic competition and endogenous entry and the one with Bertrand competition
and endogenous entry, is that the nominal interest rate cut induces business destruction in
the former and business creation in the latter, thus overcoming an important drawback char-
acterizing the model of Bilbiie et al. (2012). Therefore, the presence of strategic interactions
strongly magni�es the impact of the monetary shock on output.

3.2 The social planner problem

The endogenous process of business creation a¤ects price dispersion and the gains from
variety, which in turn a¤ects welfare. Bilbiie et al. (2008) have shown that in case of
monopolistic competition, Rotemberg pricing, and CES preferences, the optimal allocation
of resources is simply reached with an appropriate constant labor subsidy and zero producer
price in�ation, which insures markup synchronization and minimizes price adjustment costs,
while consumer price in�ation should �uctuate to account for the entry process. We show
that, when optimal �scal tools are available and can be �nanced with lump sum taxes, the
optimality of zero producer price in�ation at all times is more demanding than usual, in
case of Bertrand competition and Calvo pricing. First of all, it requires two �scal tools, a
countercyclical labor supply and a dividend tax. Second, both tools are time-dependent,
and function of the number of �rms currently active, which may create practical problems of
implementation. The main results are summarized as follows (and proved in the Appendix):

Proposition 4. Under Bertrand competition with Endogenous entry and Calvo pricing,
the optimal policy requires 1) a countercyclical labor subsidy, 2) dividend taxation, and 3) a
countercyclical CPI in�ation rate which induces a zero PPI in�ation rate.

Since the main objective of the social planner is to obtain the e¢cient allocation, to under-
stand the result it is important to keep in mind the distortions that characterize our model,
i.e. the sticky price distortion, which induces price dispersion, the Bertrand competition
distortion and the entry distortion.18 The distortion coming from Bertrand competition in-
creases markups above the monopolistic competition level depending on the number of �rms
and induces an ine¢cient amount of business creation. Having this in mind, the intuition to
understand our result is straightforward. On one side, the optimal CPI in�ation rate

��t =

�
nt
nt�1

�1=(1��)
� 1

decreases when net entry is positive, and induces stable producer prices. This eliminates
price dispersion and thus the variability of output between �rms. On the other side, the
labor subsidy and the dividend tax are chosen to eliminate the markup and to reproduce
the e¢cient equilibrium in terms of labor supply and business creation. The optimal labor
subsidy is:

��t =
nt

(� � 1) (nt � 1)

which is countercyclical since it decreases in the number of �rms active in each period. The

18Notice that Bilbiie et al. (2008), consider a model with monopolistic competition and Rotemberg (1982)
pricing and thus price dispersion is absent in their model. However, the Rotemberg framework is characterized
by the precence of convex price adjustment costs. Under monopolistic competition price dispersion and price
adjustment costs a¤ect di¤erently the slope of the NKPC and both the steady state and the model dynamics
up to a second order approximation. Nevertheless, the two sticky price distortions move in the same direction
of reducing the level of output as in�ation increases.
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optimal dividend tax is:

��Dt =
� � 1� nt
nt(� � 1)

which is positive with few �rms and negative (as under monopolistic competition) only if
the number of �rms is large enough. In case of a small number of �rms and high elasticity
of substitution, this delivers a positive and countercyclical dividend taxation.19 Alternative
but equivalent optimal taxation systems are discussed in Etro (2009, Ch. 3).

3.3 The Ramsey optimal steady state

We now derive the Ramsey optimal steady state of our model, in the absence of �scal tools.20

Looking at the Ramsey optimal steady state in�ation rate amounts to computing the modi�ed
golden rule steady state in�ation, i.e. the steady state in�ation rate obtained imposing steady
state conditions ex post on the �rst order conditions of the Ramsey plan.21 The optimal
Ramsey plan is determined by the Central Bank to maximize the discounted sum of utilities
of all agents given the constraints of the competitive economy, assuming that an ex ante
commitment is feasible. Notably, the Ramsey approach allows to study the optimal policy
around a distorted steady state, as it is in our model.22

One may expect that in the absence of �scal instruments, some producer price in�ation
could be used to reduce the average markups and the rate of business creation, that are both
above the e¢cient steady state level under Bertrand competition. Faia (2012) has shown
that the optimal steady state in�ation is still zero under Rotemberg pricing. This result is
justi�ed by the fact that the Rotemberg convex costs of price adjustment are the dominant
distortions cancelled only under zero steady state infation. Similarly, we show that zero
in�ation remains the optimal steady state also in the precence of Calvo pricing. In other
words, the costs in terms of price dispersions associated with Calvo pricing under a positive
in�ation are still too high to justify a systematic use of the in�ationary tool to address the
two mentioned ine¢ciencies. Thus, as in the standard NK model (King and Wolman, 1999,
Schmitt-Grohe and Uribe, 2011) and as in the Faia (2012), also in our case with staggered
prices à la Calvo the Ramsey problem, obtained assuming a timeless perspective, delivers
zero in�ation in steady state (see the Appendix). Thus, we can state:

Proposition 5. Under Bertrand competition with Endogenous entry and Calvo pricing,
the optimal monetary policy without �scal tools requires zero CPI in�ation rate in steady
state.

In spite of ine¢cient entry under Bertrand competition, the cost of the distortions as-
sociated with positive in�ation cannot be compensated by the impact of in�ation on entry,
which leaves zero in�ation optimal in the long run. Augmenting the model with more general

19Notice that with monopolistic competition we need only one constant tax tool, since

lim
nt!1

��t = lim
nt!1

�

���Dt

�

=
1

� � 1

20We follow the methodology of Schmitt-Grohe and Uribe (2011). All the derivations are reported in the
Appendix.
21The Ramsey steady-state equilibrium was calculated numerically by using an OLS approach, as described

by Schmitt-Grohé and Uribe (2012).
22See also King and Wolman (1999), Yun (2005), and in particular Khan et al. (2003), Schmitt-Grohé and

Uribe (2007), Faia (2009) and Faia and Rossi (2013) for a discussion on welfare analysis with a distorted
steady state.
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homothetic preferences as in Bilbiie et al. (2014) would generate non-zero long run in�ation
also under Bertrand competition.

3.4 Calvo vs Rotemberg pricing

The �rst NK models with endogenous entry by Bilbiie et al. (2008, 2014) and Faia (2012)
neglected price staggering but assumed sticky prices with adjustment costs à la Rotemberg
(1982), and it is therefore useful to compare those models with ours. A recent work by Lewis
and Poilly (2012) has augmented such models with other extensions for estimation purposes.
In these models, the marginal pro�tability of a price adjustment increases with competition,
therefore, an increase in substitutability between goods has the opposite e¤ect compared
to our model: it increases the extent to which (all) �rms adjust their prices. However,
like in our setup, a reduction in the number of �rms increases the markups and reduces
the extent to which �rms adjust their prices. Adopting a nominal price adjustment cost
as (�=2) [pt (i) =pt�1 (i)� 1]

2
pt (i)Ct (i) for each �rm i facing demand Ct(i) at time t, with

� > 0, the price setting decisions lead to the following NKPC in terms of the consumer price
in�ation:

�t = � (1� �)Et�t+1 +
(� � 1) (n� 1)

�n
cmct +

� (1� �)Etbnt+1 + bnt�1
� � 1

� %(n)n̂t

where %(n) is a parameter derived in the Appendix.23 The introduction of strategic inter-
actions reduces the slope of the NKPC under both Calvo and Rotemberg pricing (though
for di¤erent reasons), but an increase in substitutability between goods � makes the NKPC
steeper under Rotemberg pricing and less steep under Calvo pricing. Moreover, the impact
of past, current and future entry on in�ation is qualitatively di¤erent in the two models.24

The empirical analysis of Lewis and Poilly (2012) has found a small competition e¤ect in
their model with strategic interactions. This is not surprising since (besides various di¤er-
ences between setups) they focus on a relatively high number of �rms and low inter-sectoral
substitutability.25 It would be interesting to estimate the present model focusing on concen-
trated markets with high inter-sectoral substitutability.

3.5 Product substitution

The model with staggered pricing can be extended in many directions to enrich the propaga-
tion mechanism and augment persistence of in�ation. Besides traditional directions, such as
introducing capital accumulation, consumption habits or wage stickiness, we will point out
one that is peculiar to the current setup.26 As Nakamura and Steinsson (2008) have shown, a
relevant portion of price changes is actually associated with the introduction of new products.
We can account for this by assuming that the new entrants adopt right away the optimal
price for their new products: this implies that an expansionary monetary shock gradually
attracts new price-setting �rms and induces a growing in�ationary pressure. In each period,

23This expression goes back to the result in Bilbiie et al. (2008) under monopolistic competition (for
n!1) and is a particular case of the result in Lewis and Poilly (2012).
24Remarkably, this is a new case in which Calvo and Rotemberg pricing do not deliver NKPCs that are

observationally equivalent as in the baseline model (see Ascari and Rossi, 2012, for the case of trend in�ation).
25 In particular, their calibration implicitly assumes � = 1, which leads to a steady state number of �rms

high enough to limit the competition e¤ect. Moreover, in the simulations they con�ne the range of values for
� under � = 4, which again limits the strength of the competition e¤ect.
26Further details on the derivation of the NKPC and simulations are available from the authors.
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a fraction � of the (1 � �)nt�1 previously active �rms cannot adjust the nominal price and
has to maintain the pre-determined price, and the remaining fraction 1� � plus all the new
active entrants nt� (1� �)nt�1 can choose optimally the new price pt. The price index must
satisfy

P 1��t = �(1� �)Pt�1
1�� + [nt � �(1� �)nt�1] p

1��
t

which leads to the following modi�ed NKPC:

�t = �Et�t+1 + � � cmct +
�Et fn̂t+1g+ n̂t�1

� � 1
�
1 + � [� (1� �)]

2

�(1� �) (� � 1)
n̂t

where the slope remains unchanged, but both past and future business creation are pushing
up current in�ation. In such a model, the impact of expansionary shocks generates additional
business creation, due to the advantage that new �rms have (relative to the incumbents) in
choosing optimal prices.27

4 Conclusion

We have reconsidered the New-Keynesian framework under time-dependent staggered pricing
à la Calvo in markets characterized by a small number of competitors engaged in Bertrand
competition. Such a description of the relevant form of competition can be quite realistic from
an industrial organization point of view. Most local markets for traditional goods and ser-
vices do involve a small number of competitors and represent a big portion of our economies.
However, also many global markets tend to be highly concentrated because of a process of
escalation of R&D costs. In these conditions, strategic interactions cannot be ignored and
create important real rigidities that a¤ect the propagation of shocks. Price adjusters do
change their prices less when there are more �rms that do not adjust: this strengthens the
impact of nominal rigidities, which is at the heart of New-Keynesian economics. Further,
Bertrand competition a¤ects the �scal policy prescriptions to restore the social planner allo-
cation and alter the optimal interest rate rule, by requiring a more accommodative policy in
response to supply shocks.
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Appendix A: The Modi�ed NKPC

Let us consider the representative sector with the usual CES consumption index:

Ct =
hPnt

j=1 Ct(j)
��1
�

i �
��1

(34)

which implies that demand at time t of good i is Ct(i) = [pt(i)=Pt]
��
Ct, where pt(i) is the

price of the �rm and the average price index is:

Pt =
hPnt

j=1 pt(j)
1��
i 1
1��

(35)

Calvo pricing

In each period, a fraction � of the �rms cannot adjust the nominal price and maintains
the pre-determined price, and a fraction 1�� can reoptimize the nominal price to the optimal
level pt, which maximizes the discounted value of future pro�ts. Therefore, the average price
index must be:

Pt =
�
�Pt�1

1�� + (1� �)ntp
1��
t

� 1
1�� (36)

whose log-linearization around a zero in�ation steady state is:

bPt = � bPt�1 + (1� �)bpt �
1� �

� � 1
n̂t (37)

which depends on the change of the number of �rms. In every period t, each optimizing �rm
i chooses the same new price pt to maximize the expected pro�ts until the next adjustment,
taking into account the exogenous probability of exit at each period � and the probability
that there will be a new adjustment �:

max
pt
Et

1P
k=0

(1� �)k�k

(
Qt+k [pt �MCt+k]

�
pt
Pt+k

���
Ct+k

)
(38)

where MCt is nominal marginal cost, Qt+k = �kPtCt=Pt+kCt+k is the stochastic discount

factor, and we used the fact that demand at time t+k is Ct+k(i) = [pt(i)=Pt+k]
��
Ct+k. The

problem can be simpli�ed as:

max
pt
Et

1P
k=0

k
[pt �MCt+k] pt

��ItPnt+k
j=1 pt+k(j)

1��
(39)
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where  � �� (1� �) and expenditure It = PtCt is taken as given. Notice that at each time
t + k the denominator

Pnt+k
j=1 pt+k(j)

1�� includes a fraction � of the nt �rms that cannot
adjust the nominal price, maintaining the pre-determined price level and a fraction 1�� that
can reoptimize. The FOC of this problem provides, after imposing symmetry:

ptEt
1P
k=0

k

P 1��t+k

� �Et
1P
k=0

k (pt �MCt+k)

P 1��t+k

= (1� �) p1��t Et
1P
k=0

k (pt �MCt+k)

P
2(1��)
t+k

(40)

where we used P 1��t+k =
Pnt+k

j=1 pt+k(j)
1��. The FOC can be rearranged as:

�
pt
Pt

�
Ft = Kt +

�
pt
Pt

�2��
Gt �

�
pt
Pt

�1��
Ht

where

Ft � Et
1P
k=0

(��)
k
(Pt+k=Pt)

��1

and

Kt �
�

� � 1
Et

1P
k=0

(��)
k
mct+k (Pt+k=Pt)

�

which correspond to the terms emerging under monopolistic competition (see Benigno and
Woodford, 2005), plus:

Gt � Et
1P
k=0

(��)
k
(Pt+k=Pt)

2(��1)

and

Ht � Et
1P
k=0

(��)
k
mct+k (Pt+k=Pt)

2��1

A closed form solution for pt=Pt is not available as it was for monopolistic competition.
However, the steady state implies:

�
1� �

�
1�

MC

p

�
� (1� �) (p=P )

1��

�
1�

MC

p

��
= 0 (41)

and (p=P )
1��

= 1=n, therefore we can express the long run Lerner index as:

p�MC

p
=

n

�n+ 1� �
(42)

We split the FOC in four parts. The log-linearization of pt
P1

k=0 
k (Pt+k)

��1
is:

p (1 + p̂t)Et
1P
k=0

kP ��1
�
1 + (� � 1) P̂t+k

�

= pP ��1
1P
k=0

k + pP ��1 (� � 1)Et
1P
k=0

kP̂t+k + pP
��1p̂t

1P
k=0

k (43)

The log-linearization of �Et
P1

k=0 
k (pt �MCt+k) (Pt+k)

��1
is:

�Et
1P
k=0

k
h
p (1 + p̂t)�MC

�
1 + dMCt+k

�i
P ��1

�
1 + (� � 1) P̂t+k

�

= �
1P
k=0

kP ��1 (p�MC) + � (� � 1)P ��1 (p�MC)Et
1P
k=0

kP̂t+k

+�P ��1pp̂t
1P
k=0

k � �pP ��1
MC

p
Et

1P
k=0

kdMCt+k (44)
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The log-linearization of (1� �) p2��t Et
P1

k=0 
k (Pt+k)

2(��1)
is:

(1� �)
�
p2�� (1 + (2� �) p̂t)

�
Et

1P
k=0

kP 2(��1)
h
1 + 2 (� � 1) P̂t+k

i

= (1� �) p2��P 2(��1) � (1� �) p2��P 2(��1) (� � 2) p̂t
1P
k=0

k +

�2 (1� �)
2
p2��P 2(��1)Et

1P
k=0

kP̂t+k (45)

Finally, the log-linearization of (1� �) p1��t Et
P1

k=0 
kMCt+k (Pt+k)

2(��1)
is:

(1� �) p1�� [1 + (1� �) p̂t]Et
1P
k=0

kMC
�
1 + dMCt+k

�
P 2(��1)

�
1 + 2 (� � 1) bPt+k

�

= (1� �)MCp1��P 2(��1)
1P
k=0

k + (1� �)
2
MCp1��P 2(��1)bpt

1P
k=0

k +

+(1� �)MCp1��P 2(��1)Et
1P
k=0

kdMCt+k � 2 (1� �)2MCp1��P 2(��1)Et
1P
k=0

k bPt+k(46)

Simplifying for the constant terms through the steady state relation we get:

0 = pP ��1 (� � 1)Et
1P
k=0

kP̂t+k + pP
��1p̂t

1P
k=0

k+

�� (� � 1) pP ��1
�
1�

MC

p

�
Et

1P
k=0

kP̂t+k +

��P ��1pp̂t
1P
k=0

k + �pP ��1
MC

p
Et

1P
k=0

kdMCt+k+

� (1� �) p2��P 2(��1) (2� �) p̂t
1P
k=0

k +

+2 (1� �)
2
p2��P 2(��1)Et

1P
k=0

kP̂t+k+

+(1� �)
2
p1��

MC

p
pP 2(��1)bpt

1P
k=0

k +

+(1� �) p1��
MC

p
pP 2(��1)Et

1P
k=0

kdMCt+k +

�2 (1� �)
2
p1��

MC

p
pP 2(��1)Et

1P
k=0

k bPt+k

Notice that pP ��1 multiplies everything. Cancelling it and collecting terms in bpt; bPt+k; and
dMCt+k we have:

a0p̂t
1P
k=0

k + a1Et
1P
k=0

k bPt+k + a2Et
1P
k=0

kdMCt+k = 0 (47)
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where, using the steady state conditions (p=P )
1��

= 1=n and (42) we obtain:

a0 = �
� � 1

n

�
n+ � � 2�

(� � 1)2 (n� 1)

�n+ 1� �

�

a1 =
(� � 1)

2

�n+ 1� �

a2 =
(� � 1) (n� 1)

n

To rewrite the expression above in terms of the real marginal cost we add and subtract
a2
P1

k=0 
k bPt+k; so that we de�ne cmct+k = dMCt+k � bPt+k and (47) becomes:

a0p̂t
1P
k=0

k + (a1 + a2)Et
1P
k=0

k bPt+k + a2Et
1P
k=0

kcmct+k = 0 (48)

One can verify that a1 + a2 = �a0. Therefore we can rewrite:

a0p̂t
1P
k=0

k � a0Et
1P
k=0

k bPt+k + a2Et
1P
k=0

kcmct+k = 0 (49)

and solve for p̂t in recursive form:

p̂t = [1� ��(1� �)] bPt � [1� ��(1� �)]
a2
a0
cmct + ��(1� �)Etp̂t+1 (50)

In order to substitute for p̂t and p̂t+1, consider the log-linearization of the price index
(37). Solving it for p̂t we have:

p̂t =
bPt � � bPt�1
1� �

+
n̂t
� � 1

(51)

so that Etp̂t+1 = (Et bPt+1 � � bPt)= (1� �) + Etn̂t+1=(� � 1). Substituting both into (50) we
have:

bPt � � bPt�1
1� �

+
1

� � 1
n̂t

= [1� ��(1� �)]

�
bPt �

a2
a0
cmct
�

+��(1� �)

 
Et bPt+1 � � bPt

1� �
+

1

� � 1
Etn̂t+1

!
(52)

Multiplying each side by 1� �, adding to both sides � bPt and simplifying, we obtain:

�
�
bPt � bPt�1

�
= ��(1� �)

�
Et bPt+1 � bPt

�
� (1� �) [1� ��(1� �)]

a2
a0
cmct

+��(1� �)
1� �

� � 1
Etn̂t+1 �

1� �

� � 1
n̂t (53)

We know that �t = bPt � bPt�1 and �et+1 = bPt+1 � bPt. Then, dividing by � and substituting
for �t and �

e
t+1, we reach an expression for in�ation:

�t = �(1� �)Et�t+1 �
(1� �) [1� ��(1� �)]

�

a2
a0
cmct

+
�(1� �) (1� �)

� � 1
Etn̂t+1 �

(1� �)

� (� � 1)
n̂t
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Using a2=a0 = � (n� 1) [� (n� 1) + 1] = [� � 1 + �n (n� 1)] and substituting we �nally
get the NKPC. When n is exogenous, we impose n̂t+1 = n̂t = 0 and � = 0 which delivers
(15), and when n is endogenous we obtain (31).

Rotemberg pricing

For comparison purposes, let us consider Rotemberg pricing (see also Faia, 2012). In
every period t, each �rm i chooses the price pt to maximize its own value:

Vt = Et
1P
k=0

(1��)kQt+k

(
[pt+k(i)�MCt+k]Ct+k(i)�

�

2

�
pt+k (i)

pt+k�1 (i)
� 1

�2
pt+k(i)Ct+k(i)

)

(54)
Its problem can be simpli�ed as follows:

max
pt(i)

�
pt(i)

�
1� �

2

�
pt(i)
pt�1(i)

� 1
�2�

�MCt

�
pt(i)

��

Pnt
j=1 pt(j)

1��
�
(1� �)��

�
pt+1(i)
pt(i)

� 1
�2
pt+1(i)

1��

2
Pnt

j=1 pt+1(j)
1��

The FOC is:

� (1� �)

�
pt (i)

Pt

���
�
pt(i)

�
1� �

2

�
pt(i)
pt�1(i)

� 1
�2�

�MCt

�

P 2��t

+

+

"
1� �

Pt
+ �

MCt
Ptpt

�
(1� �)�

2Pt

�
pt (i)

pt�1 (i)
� 1

�2#�
pt (i)

Pt

���
+

�
�

Pt

�
pt (i)

pt�1 (i)
� 1

��
pt (i)

Pt

���
+ � (1� �)�

�
pt+1 (i)

pt (i)
� 1

��
pt+1 (i)

Pt+1

�1��
pt+1 (i)

p2t (i)
= 0

Imposing symmetry, de�ning the real marginal cost as mct = MCt=Pt and the (gross) pro-

ducer price in�ation as �t = pt=pt�1, and �nally using nt = (pt=Pt)
��1
, we have:

� (1� �)n�1t + (1� �)mctn
� �
��1

t +
(1� �)�

2
(�t � 1)

2
n�1t + 1� � + �mctn

1
1��

t

�
(1� �)�

2
(�t � 1)

2
� � (�t � 1)�t + � (1� �)� (Et�t+1 � 1)Et

�
�t+1

nt
nt+1

�
= 0

Loglinearizing the FOC provides the producer price in�ation rate ~�t as:

~�t = � (1� �)Et~�t+1 +
(� � 1) (n� 1)

�n
cmct �

� � 1 + �n (n� 1)

�n (�n� � + 1)
n̂t (55)

which goes back to the result of Bilbiie et al. (2008) under monopolistic competition (for

n ! 1). To recover the consumer price in�ation �t, we use nt = (pt=Pt)
��1

to derive
~�t = �t+ (bnt � bnt�1) =(�� 1) from which we obtain the �nal NKPC in the rate of consumer
price in�ation:

�t = � (1� �)Et�t+1 +
(� � 1) (n� 1)

�n
cmct +

� (1� �)Etbnt+1 + bnt�1
� � 1

� %(n)n̂t (56)
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with:

%(n) =
[� � 1 + �n (n� 1)] (� � 1)� �n (�n� � + 1) [1� � (1� �)]

�n (�n� � + 1) (� � 1)
(57)

Appendix B: Full Model with Endogenous Market Structures

Consider our decentralized economy with endogenous entry of �rms. The household
maximizes utility choosing how much to work and consume and what to invest in shares of
a mutual fund of �rms and in a complete contingent claims market. A fraction st of the
mutual fund entitles to receive a corresponding fraction of the dividends of all the �rms,
whose average value is Vt. Bt denots bond holding and it is their interest rate. Therefore,
the budget constraint expressed in real terms is:

Ct + Vt(nt + n
e
t )st+1 +Bt = (1 + � t)wtLt + (1 + it�1)Bt�1 +

�
(1� �Dt )dt + Vt

�
ntst � Tt

where nt and n
e
t are the active �rms in period t and the new entrants at the end of the

period wt is the wage, � t is a labor income subsidy, �
D
t a capital income tax and Tt are

lump sum taxes needed to �nance the subsidy. Households are subject to a borrowing limit
lims!1Et(1 + is)Bs � 0 to avoid Ponzi games. The FOCs are:

Lt :
�L�t
C�1t

= (1 + � t)wt

st+1 :
Vt(nt + n

e
t )

Ct
= �Et

(�
(1� �Dt+1)dt+1 + Vt+1

�
nt+1

Ct+1

)

Bt :
Et(1 + it)

CtPt
= �Et

�
1

Ct+1Pt+1

�

Labor is the only input, and output of �rm i is yt(i) = Atlt(i), where At is total factor
productivity at time t, and lt(i) is total labor employed by �rm i. The real marginal cost is
mct = wt=At. The number of �rms active in the representative sector is now variable and
follows the equation of motion nt = (1 � �)(nt�1 + n

e
t�1), where � 2 (0; 1) is an exogenous

exit probability and net is the endogenous number of entrants in period t. We assume that
the creation of a new �rm requires a �xed investment of � in units of output, so that an
increase in productivity a¤ects both the technologies for producing goods and �rms. The
endogenous entry condition in each period sets Vt = � as long as n

e
t > 0, as we will assume

to hold around the steady state. Using all this, we can rewrite the equilibrium conditions as:

�L�t
C�1t

= (1 + � t)mctAt (58)

C�1t = �(1� �)Et

�
C�1t+1

�
1 +

(1� �Dt+1)dt+1

�

��
(59)

The resource constraint of the economy is:

Yt = Ct + n
e
tVt = ntdt + wtLt (60)
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Since the demand of good i at time t is yt(i) = [pt(i)=Pt]
��
Yt total production must satisfy:

ntP
j=1

yt(j) = At
ntP
j=1

lt(j) = AtLt =
ntP
j=1

�
pt(j)

Pt

���
Yt � �tYt , Yt =

AtLt
�t

where the dispersion aggregator �t =
Pnt

j=1 [pt (j) =Pt]
��
depends on both price dispersion

and on the number of goods. Notice that with constant producer prices we have �t =

n
1=(1��)
t , which is decreasing in the number of goods: while price dispersion increases the
labor needed to produce the composite �nal good, a higher number of goods available reduces
the labor needed for it. Expliciting the expression for the dispersion aggregator we obtain:

�t = �
nt
nt�1

nt�1X

j=1

�
pt�1(j)

Pt

���
+ (1� �)nt

�
pt
Pt

���

= �
nt
nt�1

(1 + �t)
��t�1 + (1� �)nt

�
pt
Pt

���

The average price index satis�es P 1��t = �Pt�1
1�� + (1� �)ntp

1��
t . Dividing both sides

by P 1��t we have:

1 = �(1 + �t)
��1 + (1� �)nt

�
pt
Pt

�1��

Solving for pt=Pt and replacing above, we obtain the following equation of motion for the
dispersion aggregator (generalizing Yun, 2005):

�t = �
nt
nt�1

(1 + �t)
��t�1 + [(1� �)nt]

1
1��
�
1� �(1 + �t)

��1
� �
��1

Using the resource constraint we have Ct + n
e
tVt = AtLt=�t, and using the endogenous

entry condition and the evolution of the number of �rms we have:

Ct =
AtLt
�t

� �

�
nt+1
1� �

� nt

�

The dynamic model can be summarized with a system of 15 equations:
Consumption Euler Equation:

1 : C�1t = �Et

�
1 + it
1 + �t+1

C�1t+1

�
; (61)

Euler equation for V :

2 : Vt = � (1� �)Et

(�
Ct+1
Ct

��1
[Vt+1 + dt+1]

)
(62)

Entry condition:
3 : Vt = � (63)

Aggregate Resource constraint:

4 : Ct + n
e
tVt = ntdt + wtLt (64)
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Pro�ts:

5 : dt =
Yt � wtLt

nt

Law of motion of �rms:
6 : nt = (1� �) (nt�1 + n

e
t )

Labor market equilibrium:

7 : Atmct = �L
�
t Ct

Production function:

8 : Yt =
AtLt
�t

Relative price:

9 : p�t =
pt
Pt
=

�
1� �(1 + �t)

��1

(1� �)nt

� 1
1��

Price setting equation:

10 : p�tFt = Kt + (p
�
t )
2��

Gt � (p
�
t )
1��

Ht

where Ft, Kt, Gt and Ht can be written in recursive form as:

11 : Ft = 1 + ��Et

n
(1 + �t+1)

��1
Ft+1

o
;

12 : Kt =
�

� � 1
mct + ��Et

n
(1 + �t+1)

�
Kt+1

o
;

13 : Gt = 1 + ��Et

n
(1 + �t+1)

2(��1)
Gt+1

o
;

14 : Ht = mct + ��Et

n
(1 + �t+1)

2��1
Ht+1

o

Price dispersion:

15 : �t = �
nt
nt�1

(1 + �t)
��t�1 +

�
1� �(1 + �t)

��1
�
(p�t )

�1

plus a monetary policy rule.

Log-linearization

The equilibrium can be log-linearized in the following equations:

Ĉt = EtĈt+1 � (̂{t � Et�t+1) (65)

V̂t = � (1� �)EtV̂t+1 + � (1� �)
d

V
Et bdt+1 �

�
Et bCt+1 � bCt

�
(66)

bVt = 0 (67)

bCt +
neV

C
bnet +

neV

C
bVt =

nd

C
bnt +

nd

C
bdt +

wL

C
bwt +

wL

C
bLt (68)

bdt + bnt =
y

dn
yt �

wL

dn
bwt �

wL

dn
bLt (69)
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n̂t+1 = (1� �) n̂t + �n̂
e
t (70)

bwt = bCt + �bLt (71)

bwt = bAt + cmct (72)

byt = bAt + bLt +
bnt
� � 1

(73)

plus the monetary rule and the appropriate NKPC. To solve for the steady state, notice that:

mc =
(� � 1) (n� 1)

�n� � + 1
n

1
��1 (74)

Fixing A and �, we have V = � and consequently d = � (1� � (1� �)) =� (1� �). Moreover,

we have output y = ALn
1

��1 , wage w = mcA, and consumption C = mcA=�L�. Using these
in the steady state system we obtain a relation between number of �rms and labor demand:

L(n) = n�
(1� � (1� �))

� (1� �)

�
n

1
��1A

�
1�

(� � 1) (n� 1)

�n� � + 1

���1
(75)

and a single equation for n, that is:

(� � 1) (n� 1)

�n� � + 1
n
2��
��1

A

�
L(n)�� +

��

1� �
=
� (1� � (1� �))

� (1� �)
+
(� � 1) (n� 1)

�n� � + 1
n
2��
��1A = 0 (76)

From the latter we derive n and, accordingly, L(n) and all the other steady state variables.

Optimal monetary policy with subsidies

The social planner problem under �exible prices is obtained using the resource constraint

with �t = n
1=(1��)
t :

max
Lt;nt+1

E0

1X

t=0

�t

 
logCt �

�L1+�t

1 + �

!

s:v: : Ct = AtLtn
1

��1

t � �

�
nt+1
1� �

� nt

�

The FOCs are:

Lt :
�L�t
C�1t

= Atn
1

��1

t (77)

nt+1 : C�1t = � (1� �)EtC
�1
t+1

2
41 + At+1Lt+1n

2��
��1

t+1

� (� � 1)

3
5 (78)

This allocation can be reproduced with zero producer price in�ation, which involves the
following consumer price in�ation rate:

��t =

�
nt
nt�1

� 1
1��

� 1

In this case, all �rms adopt always a constant price corresponding to the equilibrium price
under �exible prices:

p =
�nt � � + 1

(� � 1) (nt � 1)

Wt

At
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Diving by Pt both sides allows to derive the marginal cost:

mct =
(� � 1) (nt � 1)

�nt � � + 1
n

1
��1

t (79)

Since optimality requires that the right hand sides of (58) and (77) are equal, (1+� t)mctAt =

Atn
1

��1

t , the optimal labor subsidy must be:

��t =
nt

(� � 1) (nt � 1)

which is always positive and allows one to verify that p = n
1

��1

t Pt is always constant. The
subsidy is decreasing in the elasticity of substitution and in the number of �rms. Since

wtLt = mctAtLt = AtLtn
1

��1

t =(1 + ��t ) dividends are:

dt =
Yt � wtLt

nt
=
AtLtn

2��
��1

t ��t
1 + ��t

Since optimality requires that the right hand sides of (59) and (78) are equal in each period,
we need to have (1� �Dt )�

�
t (� � 1) = 1 + �

�
t , or:

��Dt =
� � 1� nt
nt (� � 1)

which is negative only if the number of �rms is large enough: notice that with monopolistic
competition ��t = ���Dt = 1=(� � 1). The case we are interested in, with a small number
of �rms and high elasticity of substitution, delivers a positive and countercyclical dividend
taxation.

The Ramsey problem

We now compute the modi�ed golden rule steady state in�ation. This is obtained by
imposing steady state conditions ex post on the �rst order conditions of the Ramsey plan. The
Ramsey optimal plan is determined by maximizing the discounted sum of utilities of all agents
given the constraints of the competitive economy and assuming that ex-ante commitment
is feasible. As it is in most NK models it is not possible to combine all equations of the
competitive equilibrium in a single implementability constraint, thus we follow an hybrid
approach in which the competitive equilibrium conditions are summarized via a minimal set of
equations, as reported below. In this context, the central bank chooses the policy instrument,
namely the in�ation rate, to implement the optimal allocation obtained as solution to the
Ramsey problem.
We now reduce the 15 equilibrium conditions to a smaller number. First of all, notice that

the equation of the instrument it; i.e. the Euler equation for bonds is not necessary. This
comes from the fact that the nominal interest rate enters only into the Euler equation for
bonds. Then, once the Central Bank has choosen the optimal path for Ct and �t (using all
the other constraints) the nominal interest rate is determined ex-post. As for the standard
NK model, the Lagrangean multiplier associated with the Euler equation for bonds is always
zero. This means that we are left with 14 equations. We then combine all the static equations
with the eight dynamic ones, i.e the law of motion of nt; the equation for the optimal price,
the price dispersion equation and the Euler equation for �rms shares, plus the 4 auxiliary
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variables Ft;Kt; Gt and Ht. In particular, using the resource constraint and substituting for
the equation of �rms pro�ts, we have:

Ct + n
e
tVt = ntdt + wtLt

= Yt � wtLt + wtLt

=
AtLt
�t

where we used that Yt =
AtLt
�t

: Combing now the endogenous entry condition and the equation
of evolution of the number of �rms we get:

Ct + �

�
nt+1
1� �

� nt

�
=
AtLt
�t

;

substituting into the previos the labor market equilibrium equation solved for Ct; that is

Ct =
L��t Atmct

� , we �nd the �rst constraint of the Ramsey problem, which is:

(1R) :
Atmct
�

+ �

�
nt+1
1� �

� nt

�
L�t =

AtL
1+�
t

�t
:

Then, considering

C�1t = �(1� �)Et

�
C�1t+1

�
1 +

dt+1
�

��

and substituting for Ct =
L��t Atmct

� and Ct+1 =
L��
t+1

At+1mct+1
� ;

 
L��t Atmct

�

!�1
= �(1� �)Et

2
4
 
L��t+1At+1mct+1

�

!�1�
1 +

dt+1
�

�3
5

substituting pro�ts dt =
AtLt
nt�t

� AtmctLt
nt

; into Euler above, we �nd the second constraint of
the Ramsey problem:

(2R) :

 
L��t Atmct

�

!�1

= �(1� �)Et

2
64

�
L��
t+1

At+1mct+1
�

��1

�
1 + 1

�nt+1

�
At+1Lt+1
�t+1

�At+1mct+1Lt+1

��

3
75

the third and the fourth constraints come from the equation of price dispersion and that of
the optimal price, respectively:

(3R) : �t = �t = �
nt
nt�1

(1 + �t)
��t�1 +

�
1� �(1 + �t)

��1
�
(p�t )

�1

and

(4R) : p�tFt = Kt + (p
�
t )
2��

Gt � p
1��
t Ht
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where p�t is the relative price, that is p
�
t �

pt
Pt
: We then rewrite the four auxiliary variables

Ft;Kt; Gt and Ht in recursive form, that is:

(5R) : Ft = 1 + ��Et

n
(1 + �t+1)

��1
Ft+1

o
;

(6R) : Kt =
�

� � 1
mct + ��Et

n
(1 + �t+1)

�
Kt+1

o
;

(7R) : Gt = 1 + ��Et

n
(1 + �t+1)

2(��1)
Gt+1

o
;

and
(8R) : Ht = mct + ��Et

n
(1 + �t+1)

2��1
Ht+1

o

Finally, to easily derive the proof on the Ramsey optimal steady state we do not substitute
the equation for the relative price p�t ; which becomes the ninth Ramey constraint, i.e.:

(9R) : p�t =

�
1� �(1 + �t)

��1

(1� �)nt

� 1
1��

:

The Ramsey problem consists of maximizing the households utility function subject to the 9
constraints, (1R)� (9R). Thus, the Ramsey problem can be written as follows:

max
fLt;�t;�t;nt+1;mct;Ft;Kt;Gt;Ht;p�t g

E0

1X

t=0

�t

 
log

�
AtLt
�t

� �

�
nt+1
1� �

� nt

��
�
�L1+�t

1 + �

!

s:t:(1R)� (9R)

where we have already substituted Ct =
AtLt
�t

� �
�
nt+1
1�� � nt

�
into the utility function.

We de�ne the 9 Lagrangean multipliers �1;t; �2;t; �3;t; �4;t; �5;t; �6;t; �7;t; �8;t; �8; �9 each one
associated to one of the 9 constraints. To compute the modi�ed golden rule steady state
in�ation, we �rst derive the �rst order conditions of the Ramsey plan, we then impose the
steady state. Then, starting from a guess on the value of the steady state in�ation rate, we
verify if our guess is a solution of the Ramsey plan. The FOCs that solve the Lagrangean
are:

Lt : 0 =
1

Ct

At
�t

� �L�t + �1;t

 
��

�
nt+1
1� �

� nt

�
L��1t � (1 + �)

AtL
�
t

�t

!
+

+�2;t�

 
L��t Atmct

�

!�2
L���1t Atmct

�
+

�2;t�1
1

�

0
@ ���(1� �)

�
L��t Atmct

�

��2
L���1t Atmct

� �

�
�
1 + 1

�nt

�
AtLt
�t

�AtmctLt

��
1
A+

��2;t�1
1

�

0
@�(1� �)

 
L��t Atmct

�

!�1�
1

�nt

�
At
�t

�Atmct

��1
A (80)
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�t : 0 = ��3;t�
nt
nt�1

�(1 + �t)
��1�t�1 + �3;t (� � 1)�(1 + �t)

��2 (p�t )
�1

��5;t�1�
�1 (� � 1)�� (1 + �t)

��2
Ft � �6;t�1�

�1��� (1 + �t)
��1

Kt +

��7;t�1�
�12 (� � 1)�� (1 + �t)

2(��1)�1
Gt � �8;t�

�1�� (2� � 1) (1 + �t)
2��2

Ht

��9;t

�
1� �(1 + �t)

��1

(1� �)nt

� �
1��
�
�(1 + �t)

��2

(1� �)nt

�
(81)

�t : 0 = �
1

Ct

AtLt
�2t

+ �1;t
AtL

1+�
t

�2t
+

��2;t�1�
�1�(1� �)

 
L��t Atmct

�

!�1�
1

�

AtLt
nt�2t

�
+

+�3;t � �3;t+1��
nt+1
nt

(1 + �t+1)
� (82)

nt+1 : 0 = �
�

1� �

1

Ct
+ �

1

Ct+1
� +

��1;t+1��L
�
t+1 + �1;t

�

1� �
L�t +

��2;t�(1� �)

2
64

�
L��
t+1

At+1mct+1
�

��1
�

� 1
�n2

t+1

�
At+1Lt+1
�t+1

�At+1mct+1Lt+1

�

3
75+

+�3;t+1�

�
��

1

nt
(1 + �t+1)

��t

�
+

+�3;t+2�
2�
nt+2
n2t+1

(1 + �t+2)
��t+2 (83)

mct : 0 = �1;t
At
�
� �2;t

 
L��t Atmct

�

!�2
L��t At
�

+

+�(1� �)�2;t�1�
�1

2
4

�
L��t Atmct

�

��2
L��t At

� �

�
�
1 + 1

�nt

�
AtLt
�t

�AtmctLt

��
3
5+

+�(1� �)�2;t�1�
�1

 
L��t Atmct

�

!�1
1

�nt
AtLt +

��6;t
�

� � 1
� �8;t (84)

Ft : �4;tp
�
t + �5;t � �5;t�1�

�1�� (1 + �t)
��1

= 0 (85)

Kt : ��4;t + �6;t � �6;t�1�
�1�� (1 + �t)

�
= 0 (86)

Gt : ��4;t (p
�
t )
2��

+ �7;t � �7;t�1�
�1�� (1 + �t)

2(��1)
= 0 (87)
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Ht : �4;t (p
�
t )
1��

+ �8;t � �8;t�1�
�1�� (1 + �t)

2��1
= 0 (88)

p�t : 0 = �3;t
�
1� �(1 + �t)

��1
�
(p�t )

�2
+ �9;t

+�4;t

�
Ft � (2� �) (p

�
t )
1��

Gt + (1� �) (p
�
t )
��
Ht

�
(89)

The 10 FOCs together with the 9 constraints associated to the 9 lagrangean multipliers de�ne
a system of 19 equations in 19 unknowns.
Following Schmidt-Grohe and Uribe (2011), we impose the steady state using the guess

of � = 0 and we verify if our guess is a solution of the system, that is if zero in�ation steady
state is the Ramsey optimal steady state in�ation rate. Notice that with � = 0; the steady
state of the Ramsey becomes:

0 =
1

C

A

�
� �L� + �1

�
��

�
�n

1� �

�
L��1 � (1 + �)

AL�

�

�

+�2�

�
L��Amc

�

��2
L���1Amc

�
(90)

+�2

 
��(1� �)

�
L��Amc

�

��2
L���1Amc

�

�
1 +

1

�n

�
AL

�
�AmcL

��!
+

��2

 
(1� �)

�
L��Amc

�

��1�
1

�n
A

�
1

�
�mc

��!
(91)

0 = ��3���+ �3 (� � 1)� (p
�)
�1
� �5 (� � 1)�F

��6��K � �72 (� � 1)�G� �8� (2� � 1)H � �9
�

(1� �)
n

1
��1 (92)

0 = �
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AL

�2
+ �1

AL1+�

�2
+ �3 (1� ��)

��2(1� �)

�
L��Amc

�

��1�
1

�

AL

n�2

�
(93)

0 = �
�

1� �

1

C
+ �

1

C
� � �1��L

� + �1
�

1� �
L� + �3�

2�
1

n
�

��2�(1� �)

�
L��Amc

�

��1
AL

�n2

�
1

�
�mc

�
� �3�

�
�
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(94)

0 = �1
A

�
� �2

�
L��Amc

�

��2
L��A

�
+ (1� �)�2

 
L��t Atmct

�

!�1
AL

�n

(1� �)�2

�
L��Amc

�

��2
L��A

�

�
1 +

AL

�n

�
1

�
�mc
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� �6
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� �8 (95)
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�4 = ��5
(1� �)

p�
(96)

�4 = �6 (1� �) (97)

�4 =
�7 (1� �)

p�2��
(98)

�4 = �
�8 (1� �)

p�1��
(99)

�3 (1� �) (p
�
t )
�2
+ �4

�
F � (2� �) (p�)

1��
G+ (1� �) (p�)

��
H
�
+ �9 = 0 (100)

Atmc

�
+ �

�n

1� �
L� �

AL1+�

�
= 0 (101)

1� �(1� �)

�
1 +

AL

�n

�
1

�
�mc

��
= 0 (102)

� = (p�)
�1

(103)

p�F �K � (p�)
2��

G+ (p�)
1��

H = 0 (104)

F =
1

1� ��
(105)

K =
�

� � 1

�
mc

1� ��

�
=

�

� � 1
mcF (106)

G = F (107)

H =
mc

1� ��
= Fmc (108)

p� = n
1

��1 (109)

Notice that, once we have given a guess for � = 0 the steady state system becomes a
system of 19 equations and 18 unknows:

fp�; F;G;H;K;mc;�; L; n; �1; �2; �3; �4; �5; �6; �7; �8; �9g

As shown by Schmitt-Grohe and Uribe (2011), in order to verify that zero in�ation is indeed
a solution, we should �nd that an equation is redundant. After some algebra, we can show
that the FOCs with respect to � and p�; that is equations (92) and (100) are identical. Indeed
notice that using (96)-(99) equation (92) can be rewritten as follows:

��3 (p
�)
�1
(1� �)+�4

�
p� (� � 1)F � �K � (p�)

2��
2 (� � 1)F + (p�)

1��
(2� � 1)H

�
��9p

� = 0

(110)
Further, using (104) together with (107) rearranging and simplifying, (??) becomes:

��3 (p
�)
�1
(1� �)� �4

�
p�F + (p�)

2��
2F + (p�)

2��
�F + (p�)

1��
(1� �)H

�
� �9p

� = 0

(111)
Finally, multiplying equation (100) by (�p�t ), it coincides with (111). Thus, one of the

two equations is redundant and � = 0 is a solution of the steady state system.
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